xlim <- c(22, 88) ylim <- c(32, 68) L <- c(15, 15) file <- system.file("extdata/data", "ab16.txt", package = "BioSSA") df <- read.emb.data(file) bss <- BioSSA(cad ~ AP + DV, data = df, L = L, step = 0.5, xlim = xlim, ylim = ylim) # w-correlations for identification plot(plot(bss, type = "ssa-wcor", groups = 1:30)) # Reconstruction of elementary components rec.elem <- reconstruct(bss, groups = 1:6) plot(plot(rec.elem))
bad <- 1 good <- 3 wave <- 3 atx <- 50 aty <- 50 tolx <- 5 toly <- 5 ylim1 <- c(-10, 10) ylim2 <- c(-1, 1) ylim3 <- c(-0.2, 0.2) # Sections for testing the reconstruction quality rec <- reconstruct(bss, groups = list(good = 1:good, bad = 1:bad)) p.ny <- plot(attr(rec, "series"), type = "nuclei-section", at = aty, coord = "y", tol = toly) p.fy1 <- plot(rec$bad, type = "field-section", at = aty, coord = "y") p.fy2 <- plot(rec$good, type = "field-section", at = aty, coord = "y") p.nx <- plot(attr(rec, "series"), type = "nuclei-section", at = atx, coord = "x", tol = tolx) p.fx1 <- plot(rec$bad, type = "field-section", at = atx, coord = "x") p.fx2 <- plot(rec$good, type = "field-section", at = atx, coord = "x") # y-sections, bad and good pls <- list() pls[[1]] <- p.ny + p.fy1 pls[[2]] <- plot(residuals(bss, 1:bad), type = "nuclei-section", at = aty, coord = "y", tol = toly, ref = TRUE, col = "blue") pls[[3]] <- p.ny + p.fy2 pls[[4]] <- plot(residuals(bss, 1:good), type = "nuclei-section", at = aty, coord = "y", tol = toly, ref = TRUE, col = "blue") print(pls[[1]], split = c(1, 1, 2, 2), more = TRUE) print(pls[[2]], split = c(2, 1, 2, 2), more = TRUE) print(pls[[3]], split = c(1, 2, 2, 2), more = TRUE) print(pls[[4]], split = c(2, 2, 2, 2)) # x-sections, bad and good pls <- list() pls[[1]] <- p.nx + p.fx1 pls[[2]] <- plot(residuals(bss, 1:bad), type = "nuclei-section", at = atx, coord = "x", tol = tolx, ref = TRUE, col = "blue") pls[[3]] <- p.nx + p.fx2 pls[[4]] <- plot(residuals(bss, 1:good), type = "nuclei-section", at = atx, coord = "x", tol = tolx, ref = TRUE, col = "blue") print(pls[[1]], split = c(1, 1, 2, 2), more = TRUE) print(pls[[2]], split = c(2, 1, 2, 2), more = TRUE) print(pls[[3]], split = c(1, 2, 2, 2), more = TRUE) print(pls[[4]], split = c(2, 2, 2, 2)) #dependence of noise on trend nm.add <- noise.model(bss, groups = 1:good, model = "additive") nm.pois <- noise.model(bss, groups = 1:good, model = "pois") nm.mult <- noise.model(bss, groups = 1:good, model = "mult") p1 <- plot(nm.add, ylim = ylim1, print.alpha = FALSE) p2 <- plot(nm.pois, ylim = ylim2, print.alpha = FALSE) p3 <- plot(nm.mult, ylim = ylim3, print.alpha = FALSE) print(p1, split = c(1, 1, 3, 1), more = TRUE); print(p2, split = c(2, 1, 3, 1), more = TRUE); print(p3, split = c(3, 1, 3, 1));