xlim <- c(22, 88) ylim <- c(32, 68) L <- c(15, 15) file <- system.file("extdata/data", "ab16.txt", package = "BioSSA") df <- read.emb.data(file) bs <- BioSSA(cad ~ AP + DV, data = df, ylim = ylim, xlim = xlim, L = L) nm <- noise.model(bs, 1:3, averaging.type = "none") plot(plot(nm)) summary(nm) nm <- noise.model(bs, 1:3, averaging.type = "sliding") summary(nm) nm <- noise.model(bs, 1:3, averaging.type = "equal") summary(nm) nm <- noise.model(bs, 1:3, averaging.type = "quantile") summary(nm) nm <- noise.model(bs, 1:3, model = "poisson") summary(nm) nm <- noise.model(bs, 1:3, model = "additive") summary(nm) nm <- noise.model(bs, 1:3, model = "multiplicative") summary(nm) nm <- noise.model(bs, 1:3, model = -1.2) summary(nm) #dependence of noise on trend good <- 3 ylim1 <- c(-10, 10) ylim2 <- c(-1, 1) ylim3 <- c(-0.2, 0.2) nm.add <- noise.model(bs, groups = 1:good, model = "additive") nm.pois <- noise.model(bs, groups = 1:good, model = "pois") nm.mult <- noise.model(bs, groups = 1:good, model = "mult") p1 <- plot(nm.add, ylim = ylim1, print.alpha = FALSE) p2 <- plot(nm.pois, ylim = ylim2, print.alpha = FALSE) p3 <- plot(nm.mult, ylim = ylim3, print.alpha = FALSE) print(p1, split = c(1, 1, 3, 1), more = TRUE); print(p2, split = c(2, 1, 3, 1), more = TRUE); print(p3, split = c(3, 1, 3, 1));
Noise model: Multiplicity: 1.236 sigma: 0.009559 Noise sd: 0.0207 Noise model: Multiplicity: 1.349 sigma: 0.007153 Noise sd: 0.01238 Noise model: Multiplicity: 1.268 sigma: 0.01042 Noise sd: 0.01787 Noise model: Multiplicity: 1.36 sigma: 0.006972 Noise sd: 0.01179 Noise model: Multiplicity: 0.5 sigma: 0.3571 Noise sd: 0.6389 Noise model: Multiplicity: 0 sigma: 3.569 Noise sd: 7.013 Noise model: Multiplicity: 1 sigma: 0.03572 Noise sd: 0.06115 Noise model: Multiplicity: -1.2 sigma: 895.8 Noise sd: 2434